

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For

B. Tech COMPUTER SCIENCE & ENGINEERING

(Applicable for batches admitted from 2019-2020)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE STRUCTURE - R19

I Year – I SEMESTER

S. No	Course	Subjects	L	T	P	Credits
	Code					
1	HS1101	English	3	0	0	3
2	BS1101	Mathematics - I	3	0	0	3
3	BS1106	Applied Chemistry	3	0	0	3
4	ES1112	Fundamentals of Computer Science	3	0	0	3
5	ES1103	Engineering Drawing	1	0	3	2.5
6	HS1102	English Lab	0	0	3	1.5
7	BS1107	Applied Chemistry Lab	0	0	3	1.5
8	ES1105	IT Workshop	0	0	3	1.5
9	MC1101	Environmental Science	3	0	0	0
	•	Total Credits	16	0	12	19

I Year – II SEMESTER

S. No	Course	Subjects	L	T	P	Credits
	Code					
1	BS1202	Mathematics – II	3	0	0	3
2	BS1203	Mathematics – III	3	0	0	3
3	BS1204	Applied Physics	3	0	0	3
4	ES1201	Programming for Problem Solving using C	3	0	0	3
5	ES1213	Digital Logic Design	3	0	0	3
6	BS1205	Applied Physics Lab	0	0	3	1.5
7	HS1203	Communication Skills Lab	0	1	2	2
8	ES1202	Programming for Problem Solving using C Lab	0	0	3	1.5
9	PR1201	Engineering Exploration Project	0	0	2	1
10	MC1204	Constitution of India	3	0	0	0
	Total Credits			1	10	21

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Open Electives to be offered by CSE for Other Branches:

Open	pen Electives to be offered by CSE for Other Branches.							
Open	Elective I:	Open Elective II:						
1.	Data Structures	 Problem Solving using Python 						
2.	Java Programming	2. Web Technologies						
3.	Data Base Management Systems	3. Machine Learning						
4.	C++ Programming	4. Distributed Computing						
5.	Operating Systems	5. AI Tools & Techniques						
6.	Internet of Things	6. Data Science						
Open	Elective III:							
1.	Big Data							
2.	Image Processing							
3.	Mobile Application Development							
4.	Cyber Security							
5.	Deep Learning							
6.	Blockchain Technologies							

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	T	P	C		
		3	0	0	3		
ENGLISH (HS1101)							

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Course Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- form sentences using proper grammatical structures and correct word forms

UNIT I

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to short audio texts

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

and identifying the context and specific pieces of information to answer a series of questions both in speaking and writing.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

UNIT II

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "Infotech English", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings.

Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

UNIT III

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from 'Infotech English', Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed. Functional English: Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing. E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

(20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words

UNIT IV

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

UNIT V

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP Strategy Intensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words

Text books:

- 1) "Infotech English", Maruthi Publications. (Detailed)
- 2) "The Individual Society", Pearson Publications. (Non-detailed)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Reference books:

- 1) Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- 2) Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- 3) Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- 4) Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Voor I Comestor		L	T	P	C		
I Year - I Semester		3	0	0	3		
	MATHEMATICS-I (BS1101)						
	(Common to all Branch's for I Year B. Tech)						
	,						

Course Objectives:

- This course will illuminate the students in the concepts of calculus.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes:

At the end of the course, the student will be able to

- Utilize mean value theorems to real life problems (L3)
- Solve the differential equations related to various engineering fields (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Apply double integration techniques in evaluating areas bounded by region (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)

UNIT I: Sequences, Series and Mean value theorems:

 $(10 \, \mathrm{hrs})$

Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series – Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

UNIT II: Differential equations of first order and first degree:

(10 hrs)

Linear differential equations – Bernoulli's equations – Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

UNIT III: Linear differential equations of higher order:

(10 hrs)

Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax} V(x)$ and $x^n V(x)$ – Method of Variation of parameters. Applications: LCR circuit, Simple Harmonic motion.

UNIT IV: Partial differentiation:

(10 hrs)

Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT V: Multiple integrals:

(8 hrs)

Double and Triple integrals – Change of order of integration – Change of variables. Applications: Finding Areas and Volumes.

Text Books:

- 1) B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2) B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1) Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2) Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson.
- 3) Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4) Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	T	P	C
		3	0	0	3
	APPLIED CHEMISTRY (BS1106)				

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

Course Objectives:

- *Importance* of usage of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- *Outline* the basics for the construction of electrochemical cells, batteries and fuel cells. Understand the mechanism of corrosion and how it can be prevented.
- *Express* the increase in demand as wide variety of advanced materials are introduced; which have excellent engineering properties.
- *Explain* the crystal structures, and the preparation of semiconductors. Magnetic properties are also studied.
- Recall the increase in demand for power and hence alternative sources of power are studied due to depleting sources of fossil fuels. Advanced instrumental techniques are introduced.

UNIT I: Polymer Technology

Polymerisation:- Introduction-methods of polymerization (emulsion and suspension)-physical and mechanical properties.

Plastics: Compounding-fabrication (compression, injection, blown film, extrusion) - preparation, properties and applications of PVC, polycarbonates and Bakelite-mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.

Elastomers:- Natural rubber-drawbacks-vulcanization-preparation, properties and applications of synthetic rubbers (Buna S, thiokol and polyurethanes).

Composite materials: Fiber reinforced plastics-conducting polymers-biodegradable polymers-biopolymers-biomedical polymers.

Learning Outcomes: At the end of this unit, the students will be able to

- *Outline* the properties of polymers and various additives added and different methods of forming plastic materials.
- Explain the preparation, properties and applications of some plastic materials.
- Interpret the mechanism of conduction in conducting polymers.
- *Discuss* natural and synthetic rubbers and their applications.

UNIT II: Electrochemical Cells and Corrosion

Single electrode potential-Electrochemical series and uses of series-standard hydrogen electrode, calomel electrode-concentration cell-construction of glass electrode-Batteries: Dry cell, Ni-Cd cells, Ni-Metal hydride cells, Li ion battery, zinc air cells–Fuel cells: H₂-O₂, CH₃OH-O₂, phosphoric acid, molten carbonate.

Corrosion:-Definition-theories of corrosion (chemical and electrochemical)-galvanic corrosion, differential aeration corrosion, stress corrosion, waterline corrosion-passivity of metals-galvanic series-factors influencing rate of corrosion-corrosion control (proper designing, cathodic protection)-Protective coatings: Surface preparation, cathodic and anodic coatings, electroplating,

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

electroless plating (nickel). Paints (constituents, functions, special paints).

Learning Outcomes: At the end of this unit, the students will be able to

- Explain the theory of construction of battery and fuel cells.
- Categorize the reasons for corrosion and study some methods of corrosion control.

UNIT III: Material Chemistry

Part I:

Non-elemental semiconducting materials: Stoichiometric, controlled valency & chalcogen photo/semiconductors-preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling, epitaxy, diffusion, ion implantation) - Semiconductor devices (p-n junction diode as rectifier, junction transistor).

Insulators & magnetic materials: electrical insulators-ferro and ferri magnetism-Hall effect and its applications.

Part II:

Nano materials:- Introduction-sol-gel method- characterization by BET, SEM and TEM methods-applications of graphene-carbon nanotubes and fullerenes: Types, preparation and applications

Liquid crystals: - Introduction-types-applications.

Super conductors:-Type -I, Type II-characteristics and applications

Learning Outcomes: At the end of this unit, the students will be able to

- *Understand* the importance of materials like nanomaterials and fullerenes and their uses.
- Understand liquid crystals and superconductors.
- *Understand* the preparation of semiconductors.

UNIT IV: Advanced Concepts/Topics in Chemistry

Computational chemistry: Introduction, Ab Initio studies

Molecular switches: characteristics of molecular motors and machines, Rotaxanes and Catenanes as artificial molecular machines, prototypes – linear motions in rotaxanes, an acid-base controlled molecular shuttle, a molecular elevator, an autonomous light-powered molecular motor

Learning Outcomes: At the end of this unit, the students will be able to

- *Obtain* the knowledge of computational chemistry
- Understand importance molecular machines

UNIT V: Spectroscopic Techniques & Non Conventional Energy Sources

Part A: SPECTROSCOPIC TECHNIQUES

Electromagnetic spectrum-UV (laws of absorption, instrumentation, theory of electronic spectroscopy, Frank-condon principle, chromophores and auxochromes, intensity shifts, applications), FT-IR (instrumentation and IR of some organic compounds, applications)-magnetic resonance imaging and CT scan (procedure & applications).

Part B: NON CONVENTIONAL ENERGY SOURCES

Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, hydropower, geothermal power, tidal and wave power, ocean thermal energy conversion.

Learning Outcomes: At the end of this unit, the students will be able to

- understand the principles of different analytical instruments.
- explain the different applications of analytical instruments.
- design sources of energy by different natural sources.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Text Books:

1) Engineering Chemistry by Jain and Jain; Dhanpat Rai Publicating Co.

Reference Books:

1) Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2019 edition.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	T	P	C					
		3	0	0	3					
FUND	FUNDAMENTALS OF COMPUTER SCIENCE (ES1112)									

Course Objectives:

This course is designed to:

- Explain the concepts of computers and classify based on type and generation.
- Demonstrate the techniques of writing algorithms pseudo codes & schematic flow of logic in software development process.
- Teach about the purpose of networks and types of networks and media to connect the computers
- Teach about Operating Systems and its concepts.
- Illustrate about database architecture and its components
- Illustrate about distributed computing, peer to peer, grid, cloud on demand and utility computing.

Course Outcomes:

On completion of the course the student will be able to

- Illustrate the concept of input and output devices of Computers and how it works and recognize the basic terminology used in computer programming.
- Recognize the Computer networks, types of networks and topologies.
- Summarize the concepts of Operating Systems and Databases.
- Recite the Advanced Computer Technologies like Distributed Computing & Wireless Networks.

UNIT I

A Simple Computer System: Central processing unit, the further need of secondary storage, Types of memory, Hardware, Software and people.

Peripheral Devices: Input, Output and storage, Data Preparation, Factors affecting input, Input devices, Output devices, Secondary devices, Communication between the CPU and Input/ Output devices. (Text Book 1)

UNIT II

Problem Solving and Programming: Algorithm development, Flowcharts, Looping, some programming features, Pseudo code, the one-zero game, some structured programming concepts, documents.

Programming Languages: Machine Language and assembly language, high -level and low level languages, Assemblers, Compilers, and Interpreters (Text Book 1)

UNIT III

Computer Networks: Introduction to computer Networks, Network topologies-Bus topology, star topology, Ring topology, Mesh topology, Hybrid topology, Types of Networks: Local area Network, Wide Area Networks, Metropolitan Networks, Campus/ Corporate Area Network, Personal Area Network, Network Devices- Hub, Repeater, Switch, Bridge, Router, Gateway, Network interface Card, Open System Inter connection Model (Text Book 2)

Operating systems: Introduction, Evolution of operating systems, Process Management- Process control block, Process operations, Process scheduling, Command Interpreter, Popular operating

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

systems- Microsoft DOS, Microsoft Windows, UNIX and Linux. (Text Book 2)

UNIT IV

Database Systems: File-Oriented Approach, Database-oriented Approach-Components of Database system, Advantages & Disadvantages of Database approach, Applications of Database systems, Database views, Three-schema architecture, Database models-Hierarchical model, Network Model, relational Model, Object-oriented Data Model, Components of database management systems, Retrieving Data through Queries (Text Book 2)

Computer Systems and Development: Investigation, Analysis, Design, system processing and general program design, Presentation to management and users, Implementation, Documents. (Text Book 1)

UNIT V

Emerging Computer Technologies: Distributed Networking, Peer-to-peer Computing, Categorization of Peer-to-peer system Applications of Peer-to-peer networks, Grid Computing-components of Grid computing, Applications of Grid computing, Cloud Computing-characteristics of cloud computing systems, cloud computing services, cloud computing architecture, cloud computing applications, Cloud computing concerns

Wireless Networks: Wireless network operations, Types of wireless networks, security in wireless Networks, Limitations of wireless Networks, Bluetooth – Bluetooth Piconets, Avoiding Interference in Bluetooth Devices, Bluetooth Security, Differences between Bluetooth and Wireless Networks. (Text Book 2)

Text Books:

- 1. An Introduction to Computer studies –Noel Kalicharan-Cambridge
- 2. Fundamentals of Computers –Reema Thareja-Oxford higher education

References Books:

- 1. Introduction to Information Technology ITL education Solution Limited, Pearson
- 2. Computer Science and overview-J. Glenn Brookshear, Dennis Brylow-Pearson

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	T	P	C		
		1	0	3	2.5		
ENGINEERING DRAWING (ES1103)							

Course Objectives:

• Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Course Outcomes:

• The student will learn how to visualize 2D & 3D objects.

UNIT I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents & normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

UNIT II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

UNIT III

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

UNIT IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

UNIT V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Note: In the End Examination there will be no question from CAD.

Text Books:

- 1) Engineering Drawing by N.D. Butt, Chariot Publications
- 2) Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

Reference Books:

- 1) Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
- 2) Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3) Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4) Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	T	P	C		
		0	0	3	1.5		
ENGLISH LAB (HS1102)							

UNIT I

Vowels, Consonants, Pronunciation, Phonetic Transcription

UNIT II

Past tense markers, word stress-di-syllabic words, Poly-Syllabic words

UNIT III

Rhythm & Intonation

UNIT IV

Contrastive Stress (Homographs)

UNIT V

Word Stress: Weak and Strong forms

Stress in compound words

References books:

- 1) Infotech English, Maruthi Publications (with Compact Disc).
- 2) Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 3) English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 4) English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 5) English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 6) English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 7) English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	T	P	C		
1 1 cm 1 Schioster		0	0	3	1.5		
APPLIED CHEMISTRY LAB (BS1107)							

Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions, volumetric titrations, quantitative analysis

- 1) Determination of HCl using standard Na₂CO₃ solution.
- 2) Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3) Determination of Mn (II) using standard oxalic acid solution.
- 4) Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5) Determination of copper (II) using standard hypo solution.
- 6) Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7) Determination of iron (III) by a colorimetric method.
- 8) Determination of the concentration of acetic acid using sodium hydroxide (pH-metry method).
- 9) Determination of the concentration of strong acid vs strong base (by conductometric method).
- 10) Determination of strong acid vs strong base (by potentiometric method).
- 11) Determination of Mg⁺² present in an antacid.
- 12) Determination of CaCO₃ present in an egg shell.
- 13) Estimation of Vitamin C.
- 14) Determination of phosphoric content in soft drinks.
- 15) Adsorption of acetic acid by charcoal.
- 16) Preparation of nylon-6, 6 and Bakelite (demonstration only).

Of the above experiments at-least 10 assessment experiments should be completed in a semester. **Outcomes**: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books:

1) A Textbook of Quantitative Analysis, Arthur J. Vogel.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	T	P	C		
		0	0	3	1.5		
IT WORKSHOP (ES1105)							

Course Objectives:

The objective of IT Workshop is to

- Explain the internal parts of a computer, peripherals, I/O ports, connecting cables
- Demonstrate basic command line interface commands on Linux
- Teach the usage of Internet for productivity and self paced lifelong learning
- Describe about Compression, Multimedia and Antivirus tools
- Demonstrate Office Tools such as Word processors, Spreadsheets and Presentation tools

Course Outcomes:

Students should be able to:

- Assemble and disassemble components of a PC
- Construct a fully functional virtual machine, Summarize various Linux operating system commands,
- Secure a computer from cyber threats, Learn and practice programming skill in Github, Hackerrank, Codechef, HackerEarth etc.
- Recognize characters & extract text from scanned images, Create audio files and podcasts
- Create video tutorials and publishing, Use office tools for documentation, Build interactive presentations, Build websites, Create quizzes & analyze responses.

Computer Hardware:

Experiment 1: Identification of peripherals of a PC, Laptop, Server and Smart Phones: Prepare a report containing the block diagram along with the configuration of each component and its functionality, Input/Output devices, I/O ports and interfaces, main memory, cache memory and secondary storage technologies, digital storage basics, networking components and speeds.

Operating Systems:

Experiment 2: Virtual Machine setup:

- Setting up and configuring a new Virtual Machine
- Setting up and configuring an existing Virtual Machine
- o Exporting and packaging an existing Virtual Machine into a portable format

Experiment 2: Operating System installation:

o Installing an Operating System such as Linux on Computer hardware.

Experiment 3: Linux Operating System commands:

- o General command syntax
- o Basic *help* commands
- o Basic File system commands
- Date and Time
- Basic Filters and Text processing
- o Basic File compression commands
- Miscellaneous: apt-get, vi editor

Networking and Internet:

Experiment 4: Networking Commands:

o ping, ssh, ifconfig, scp, netstat, ipstat, nslookup, traceroute, telnet, host, ftp, arp, wget,route

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Experiment 5: Internet Services:

- Web Browser usage and advanced settings like LAN, proxy, content, privacy, security, cookies, extensions/ plugins
- o Antivirus installation, configuring a firewall, blocking pop-ups
- Email creation and usage, Creating a Digital Profile on LinkedIn
- o Source control on Github, Hackerrank, Codechef, HackerEarth, etc
- Google hangout/ Skype/ gotomeeting video conferencing
- o archive.org for accessing archived resources on the web

Productivity Tools:

Experiment 6: Demonstration and Practice on archival and compression tools

- o scanning and image editing tools
- o OCR and text extraction
- o audio players, recording using Mic, editing, podcast preparation
- o video players, recording using webcam/camcorder, editing
- o podcast, screencast, vodcast, webcasting

Office Tools:

Experiment 7: Demonstration and Practice on Text Editors like Notepad++, Sublime Text, Atom, Brackets, Visual code, etc

Experiment 8: Demonstration and practice on Microsoft Word, Power Point

Experiment 9: Demonstration and practice on Microsoft Excel.

Experiment 10: Demonstration and practice on LaTeX and produce professional pdf documents.

Experiment 12: Cloud based productivity enhancement and collaboration tools:

- o Store, sync, and share files with ease in the cloud using Google Drive
- o Document creation and editing text documents in your web browser using Google docs
- o Handle task lists, create project plans, analyze data with charts and filters using Google Sheets
- o Create pitch decks, project presentations, training modules using Google Slides
- o Manage event registrations, create quizzes, analyze responses using Google Forms
- o Build public sites, internal project hubs using Google Sites
- o Online collaboration through cross-platform support using Jamboard
- Keep track of important events, sharing one's schedule, and create multiple calendars using Google Calendar

Text Books:

- 1) Computer Fundamentals, Anita Goel, Pearson Education, 2017
- 2) PC Hardware Trouble Shooting Made Easy, TMH

References Books:

1) Essential Computer and IT Fundamentals for Engineering and Science Students, Dr.N.B.Vekateswarlu, S.Chand

e-Resources:

- 1) https://explorersposts.grc.nasa.gov/post631/2006-2007/computer_basics/ComputerPorts.doc
- 2) https://explorersposts.grc.nasa.gov/post631/2006-2007/bitsnbyte/Digital_Storage_Basics.doc
- 3) https://www.thegeekstuff.com/2009/07/linux-ls-command-examples

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

- 4) https://www.pcsuggest.com/basic-linux-commands/
- $5) \ \underline{https://www.vmware.com/pdf/VMwarePlayerManual10.pdf}$
- 6) https://geek-university.com/vmware-player/manually-install-a-guest-operating-system/
- 7) https://gsuite.google.com/learning-center/products/#!/

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

I Year - I Semester		L	T	P	C
		3	0	0	0
	ENVIRONMENTAL SCIENCE (MC1101)				

Course Objectives:

The objectives of the course are to impart:

- Overall understanding of the natural resources.
- Basic understanding of the ecosystem and its diversity.
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities.
- An understanding of the environmental impact of developmental activities.
- Awareness on the social issues, environmental legislation and global treaties.

UNIT I

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Sustainability: Stockholm and Rio Summit—Global Environmental Challenges: Global warming and climate change, acid rains, ozone layer depletion, population growth and explosion, effects. Role of information technology in environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem; Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT II

Natural Resources: Natural resources and associated problems.

Forest resources: Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources: Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

UNIT III

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity-classification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

UNIT IV

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

pollution. - Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his well being.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and ${\rm e}$ – waste management.

UNIT V

Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting-Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act -Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.

Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics.

The student should Visit an Industry / Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

- 1) Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2) Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3) Environmental Studies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

Reference Books:

- 1) Text Book of Environmental Studies, Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.
- 2) A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3) Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4) Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New Age International Publishers, 2014